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The unstable conclusion drawn by Ortloff & Ives of the e¢ylinder motion in a viscous

stream is shown to be incorrect. Furthermore, a region of stable solution is derived in
the parameter space defined by the normal and tangential drag coefficients.

1. Introduction

Ortloff & Ives (1969, p. 713) modified the equation derived by Paidousis (1966,
p. 737) to model the dynamic motion of a thin flexible cylinder in a viscous stream.
This same mathematical model is currently applied to cable-towed arrays (Kennedy
1980). The solution proposed by Ortloff & Ives for their equation predicts a temporally
unstable response. If this instability conclusion is true, it implies that the linearized
equation derived to describe the low-frequency response of cable-towed array systems
is valid for only a limited (i.e. finite) time interval. In this short note the Ortloff &
Ives’ solution and the resulting temporal instability conclusion are shown to be
incorrect. Furthermore, a stable-solution region is derived in the parameter space

defined by the normal and tangential drag coefficients of the cable-towed array
system.

2. Ortloff & Ives’ instability result

The equation of motion of a thin flexible cylinder with zero bending rigidity used by
Ortloff & Ives (1969, p. 715) is

PyM+m Pyl , ay u? %y u 9y
w® Mt 2[ OTD(L x)] 503D Ur T O T g, +i0vp 5 = 0 (21

where y = transverse displacement, = longitudinal distance, { = time, M = virtual
mass of fluid per unit length, m = mass of the cylinder per unit length, u = free-stream
velocity, L = cylinder length, D = cylinder diameter, (', = tangential drag co-
efficient, and €, = normal drag coefficient. With the following non-dimensionalizations

7= 0/Lyu, B=M/M+m), £=x/L, ¢=L/D, n=y/L, (2.2)

and the following notation
a = p(1—-3Cre), b= 3pCre),
c=3Cp+Cy)ef =b+d, (2.3)
d = 3}Cyef, p=a+bE,
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equation (2.1) can be transformed into (Ortloff & Ives 1969, p. 716)
/T o _ 2.4
82+b +b +/>’b /u+dar—0. (2.4)

Ortloff & Ives (1969, p. 717) clalm that the solution of (2.4) (satisfying the boundary
conditions specified by them) when ¢ approaches infinity while fe remains bounded,

wen) = 2((F2-€) (=07 £ By(eosw,n) | 20} (- ) bitw,—ia]),
2

(2.5)
where #{.} = real part of {.}, J,(.) = Bessel function of order 4,
id Lf b, o\t
el 2.
on =3 i), (26)
$,=nm (n=0/12..) (2.7)
= zeros of Jy(x),
B,, »n=1,2,..., are constants to be chosen from the prescribed initial condition
(€, 0) = 7€)
Thus, according to the proof of Ortloff & Ives,
9, 7) = R{cosw, TV (u)}, (2.8)
where Vip)=p [+ 2w} pd(wy —id)3] (2.9)

is the solution of (2.4} if the initial deflection is chosen as

) = Vig), (2.10)

as € approaches infinity while f¢ remains bounded. Since w, is always complex-valued
(see equation (2.6)), there is an unbounded component in cosw,7 (equation (2.8)).
This is the basis of the instability result argued by Ortloff & Ives. In the next section,
this instability conclusion is shown to be incorrect, while a rather large stable region
is derived.

3. Derivation of stable region
The correct solution form of (2.4) is
9w, 7) = R V(p), (3.1)
where V(p) = p=ON20T Joy o] + 208 b (0, — id)3), (3.2)

as opposed to (2.8) used by Ortloff & Ives. The complex character of w,, leads Ortloff &
Ives to the incorrect conclusion that the motion is unstable for all values of parameters
in w,.
The boundary condition of V(—b) = 0 requires that
+ 2wt ub (0, —id)t = 6, (3.3)
where d,, are zeros of the Bessel function in (3.2). Solving (3.3) for w,, gives

_d 1 b? , R %
wn—Eié(—Zé‘n—d) . (3.4)



Stability analysis of the Ortloff-Ives equation 295

Since the zeros of the Bessel function Ju/c,(.) are all real (Abramowitz & Stegun
1972), the necessary and sufficient condition for a bounded solution of the form of
(3.1) is

Hw,)} > 0. (3.5)
Therefore, either
2
a'ﬂ=—b—8§—d2> 0 (3.6)
a
or 0,<0 and d2 (-0, (3.7)

are the conditions for a stable solution of (2.4). In order to gain more insight from
conditions (3.6) and (3.7) the following property is proved.

Property. If Cp > 2 /e, then y(u, 7) (defined by (3.1)) is bounded.

Proof. If Cp > 2/e then

a=pf(1—3Cpe) < 0. (3.8)

B2
Thus ~Eé‘f, 20, (3.9)
and lo,it < d, (3.10)

which is condition (3.7). @.E.D.

Note that the physical interpretation of the above property is simply that the
dynamic motion of the thin flexible ¢ylinder is stable if the tension along the cylinder
is large enough.

The author acknowledges that the explanation that appears in the first paragraph
of § 3 comes from a referee’s comment, and is more elegant than the author’s original
and lengthy derivation for pointing out the incorrect conclusion drawn by Ortloff &
Ives. This work was performed at The Analytic Sciences Corporation supported by
The Underwater Systems Centers, Fort Lauderdale, Florida, under Contract N00140-
79-C-6686.
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